

spikely

Spike sorting made simple

Spikely is an application built on top of SpikeInterface [https://github.com/SpikeInterface] designed to simplify
the process of creating and running spike sorting pipelines.
Spikely supports loading, preprocessing, sorting, curating, and exporting
of extracellular datasets that are stored in SpikeInterface compatible file
formats [https://spikeinterface.readthedocs.io/en/latest/supported.html].

[image: _images/gui.png]

Contents

	Overview

	Installation

	Workflow

	Contact Us

Overview

SpikeInterface [https://github.com/SpikeInterface] is a powerful Python-based extracellular data processing
framework supporting a broad range of features and functions. For those well
versed in Python programming and needing full control over the extracellular
data processing process, working directly with SpikeInterface is the way to go.

Spikely, on the other hand, is for users who want to take advantage of a subset
SpikeInterface’s processing power without having to program in Python. Instead,
Spikely provides a GUI on top of SpikeInterface [https://github.com/SpikeInterface] optimized for a specific use
case: pipelining extracelluar data from a source to a sink while enabling one
or more data transformations along the way.

In addition to being familiar with SpikeInterface [https://github.com/SpikeInterface], taking full advantage of
spikely requires an understanding of a few key concepts specific to it:

	Element - An element in Spikely corresponds to capabilites exposed by the
data processing nodes in SpikeInterface. Specifically, spikely elements
consist of:

	Extractors - Extractors read raw extracelluar data from files, and make
those data available to downstream elements in the pipeline. Extractor
names correspond to the raw extracellular data format they support.
Spikely requires one, and only one, Extractor per pipeline.

	Pre-Processors - Pre-Processors transform data sourced into the
pipeline by the Extractor before it is sent to the Sorter.
Pre-processors are optional. Spikely supports multiple Pre-Preprocessors
per pipeline betwween the Extractor and the Sorter.

	Sorters - Spike sorting is a big part of SpikeInterface [https://github.com/SpikeInterface], and spikely’s
Sorters correspond closely to spike sorters in SpikeInterface [https://github.com/SpikeInterface].
Spikely requires the presence of one, and only one, Sorter in the
pipeline. Sorters write their results out to a file (unless specified not to) allowing a
Sorter to act as a terminating sink in a spikely pipeline.

	Curators - Curators, also known as post-processors, automatically curate sorted
data produced by the Sorter and output them downstream to either another
Curator or to a pipeline terminating Exporter. Curators are optional.
Spikely supports multiple Curators per pipeline.

	Exporters - Exporters act as data sinks, and transform sorted datasets
to a formatted output file. Exporters are optional, and spikely only supports
a single Exporter per pipeline.

	Parameter - Most elements have one or more parameters associated with
them that can be edited by the user in spikely to customize the behavior of
that element during the execution of a pipeline. Parameters are element
specific, and some familiarity with the proxied node in SpikeInterface [https://github.com/SpikeInterface] is
required to correctly configure an element.

	Pipeline - The user organizes elements in spikely in a series where
extracelluar data “flows” from the first element in the Pipeline to the last
when the pipeline is run. Pipelines, and their associated parameterized
elements, can be saved for future use therby enabling greater efficiency and
repeatability.

Installation

spikely is a Python package. It can be installed using pip:

pip install spikely

If you want to install from the source so that you are up-to-date with the latest development, you can install with:

git clone https://github.com/SpikeInterface/spikely
cd spikely
python setup.py install (or develop)

Requirements

The following Python packages are required for running spikely.
They are installed when using the pip installer for spikeinterface.

	PyQt5

	spikeextractors

	spiketoolkit

	spikesorters

Workflow

With a solid grounding in SpikeInterface [https://github.com/SpikeInterface], and a grasp of spikely’s element,
parameter, and pipeline abstractions, the last piece of the puzzle to unlocking
spikely’s potential is understanding its workflow and associated UI layout.

At a high level spikely’s workflow consists of creating a pipeline of elements,
configuring the parameters associated with those elements, and finally, running
the pipeline to cause extracellular data to be brought into the pipeline by the
Extractor and transformed by the other elements in the pipeline flow.

[image: _images/gui_annotated.png]

	Constructing the Pipeline - The user constructs a pipeline in spikely by
choosing the element category (e.g., Extractors), choosing one of the
installed elements within that category (e.g., MdaRecordingExtractor) and
then adding that element to the pipeline using the “Add Element” button.
Individual elements added to the pipeline can be moved up, moved down, or
deleted as part of pipeline construction process. Note, there are pipeline
policies enforced by spikely related to ordering and singularity that limit
certain pipeline permutations.

	Configuring Element Parameters - When an element is selected in the
Construct Pipeline part of the UI that element’s parameters are displayed
in the Configure Elements part of the UI. Element parameters are specific
to it, so a detailed explanation of an element’s parameters will need to be
gleaned from the corresponding SpikeInterface [https://github.com/SpikeInterface] documentation. Clicking on
the Value field for a parameter enables the user to edit it. Spikely does
rudimentary type checking, but for the most part it is up to the user to
ensure that a parameter value is valid.

	Operating the Pipeline - While the commands available to the user in the
Construct Pipeline’ part of the UI operate on individual elements in the
pipeline, *Operate Pipeline commands act on the pipeline as a whole.
Currently, two operations are supported: Run, and Clear. Clear
deletes all the elements in the pipeline enabling the user to quickly tear
down the current pipeline before building up a new one. Run is where the
magic happens, instantiating the pipeline and transforming the
extracellular data as it flows from the source element (Extractor) to the
sink element (Sorter or Exporter).

Tip

The pipeline creation and parameter configuration steps can be
shortcut by saving and loading complete pipelines to/from files using the
corresponding actions from spikely’s File Menu.

Contact Us

Below are the authors of spikely:

	Roger Hurwitz [1]

	Cole Hurwitz [https://www.inf.ed.ac.uk/people/students/Cole_Hurwitz.html] [2]

For any inquiries, please email rogerhurwitz@gmail.com or just leave an issue!

	Independent Developer, Portland, Oregon, USA

	The Institute for Adaptive and Neural Computation (ANC), University of Edinburgh, Edinburgh, Scotland.

Index

 _static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 spikely

 		
 Overview

 		
 Installation

 		
 Requirements

 		
 Workflow

 		
 Contact Us

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/up.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_images/gui_annotated.png
e

|construct Pipeline 1 ||configure Parameters 2
Extractors ~ | MdaRecordingExtractor ~ | Add Element Barameter i Value
freq_min float 3000
MEArecRecordingExtractor freq_max float 6000.0
freq_wid float 1000.0
type str ffe
&% ThresholdNumspikes
order int 3
¥ PhyExporter
cache bool False
Move Up Move Down Delete
[Operate Pipeline 3
Run Clear

Version 0.4.4

_static/ajax-loader.gif

_images/gui.png
File
Construct Pipeline Configure Parameters
Extractors ~ | MdaRecordingExtractor ~ | Add Element Barameter i Value
freq_min float 3000
MEArecRecordingExtractor freq_max float 6000.0
BandpassFilter freq_wid float 1000.0
| Klusta
type str ffe

(=% ThresholdNumspikes

order int 3
(¥ PhyExporter
cache bool False
Move Up Move Down Delete
Operate Pipeline.
Run Clear

Version 0.

